随着铁路大提速和高速铁路的发展,行车密度、载重量和行车速度的不断提高加速了铁轨的损伤,钢轨在使用过程中,由于自然因素以及列车载荷的作用,致使其表面和内部容易发生各类损伤和缺陷,严重时甚至会造成钢轨断裂、列车脱轨等重大事故。因为铁路钢轨定期进行检测具有十分重要的作用,下面给大家介绍两种检测方法:
无损检测技术应用于高速铁路钢轨检测:
用超声导波对钢轨进行无损检测时,可以通过信号发生器产生激励信号,经功率放大器放大后由导波传感器在钢轨的一端激发超声导波,如果导波沿着没有损伤的轨头、轨腰和轨底传播,那么导波的群速度和相速度就基本保持一致;如果导波在传播过程中遇到界面不连续处,则可能发生反射、散射和模式转换,这样便会产生携带局部缺陷特征的回波。通过对回波信号进行分析,就可以确定缺陷的位置,回波幅值还能够用于钢轨损伤程度的评定。
电磁检测应用于高速铁路钢轨检测:
建立起在高速运动的交流激励下,铁轨表面、亚表面一定深度下的裂纹、应力和微观结构变化等多种因素与电流磁场、信号响应的关系模型,得出被测钢轨的裂纹特征、应力分布等信息。
功率放大器在高速铁路铁轨检测中的应用
发布 2020-10-29
随着铁路大提速和高速铁路的发展,行车密度、载重量和行车速度的不断提高加速了铁轨的损伤,钢轨在使用过程中,由于自然因素以及列车载荷的作用,致使其表面和内部容易发生各类损伤和缺陷,严重时甚至会造成钢轨断裂、列车脱轨等重大事故。因为铁路钢轨定期进行检测具有十分重要的作用,下面给大家介绍两种检测方法:
无损检测技术应用于高速铁路钢轨检测:
用超声导波对钢轨进行无损检测时,可以通过信号发生器产生激励信号,经功率放大器放大后由导波传感器在钢轨的一端激发超声导波,如果导波沿着没有损伤的轨头、轨腰和轨底传播,那么导波的群速度和相速度就基本保持一致;如果导波在传播过程中遇到界面不连续处,则可能发生反射、散射和模式转换,这样便会产生携带局部缺陷特征的回波。通过对回波信号进行分析,就可以确定缺陷的位置,回波幅值还能够用于钢轨损伤程度的评定。
电磁检测应用于高速铁路钢轨检测:
建立起在高速运动的交流激励下,铁轨表面、亚表面一定深度下的裂纹、应力和微观结构变化等多种因素与电流磁场、信号响应的关系模型,得出被测钢轨的裂纹特征、应力分布等信息。
无损检测技术应用于高速铁路钢轨检测:
用超声导波对钢轨进行无损检测时,可以通过信号发生器产生激励信号,经功率放大器放大后由导波传感器在钢轨的一端激发超声导波,如果导波沿着没有损伤的轨头、轨腰和轨底传播,那么导波的群速度和相速度就基本保持一致;如果导波在传播过程中遇到界面不连续处,则可能发生反射、散射和模式转换,这样便会产生携带局部缺陷特征的回波。通过对回波信号进行分析,就可以确定缺陷的位置,回波幅值还能够用于钢轨损伤程度的评定。
电磁检测应用于高速铁路钢轨检测:
建立起在高速运动的交流激励下,铁轨表面、亚表面一定深度下的裂纹、应力和微观结构变化等多种因素与电流磁场、信号响应的关系模型,得出被测钢轨的裂纹特征、应力分布等信息。